突发校正卷积码的实现文献翻译
[关键词:卷积码] [热度 ]提示:此作品编号wxfy0237,word完整版包含【英文文献,中文翻译】 |
通信工程文献翻译——摘要 - 提出了一种解码任何具有解码延迟的卷积码的通用过程,N个块将校正所有连续到r个或更少个连续块的脉冲串,后面是至少N-1个连续的无错误块的保护空间。 这表明所有这些代码都可以转换成一种称为“双重系统”的形式,从而简化了解码电路。 然后可以用与块线性码的奇偶校验电路相同的复杂度的电路来实现解码过程。 给出了一个完整的解码器的框图,用于最佳的突发校正码。 进一步表明,解码错误之后的误差传播总是由于出现无障碍块的双重保护空间而终止。
一,引言
纠错码的编码依赖关系存在于整个编码序列上,而不是有限长度段或块的CONVOLUTIONAL类型,于1955年首先由Elias引入[I]。 D.W.Hagelbarger [2]是第一个将这些代码用于突发校正。 (Hagelbarger使用术语“循环”代码而不是“卷积”代码,后来的几位作者遵循了他的实践,但是在本文中,我们将遵守以利亚的原始用法)。WW Peterson [3]完善了Hagelbarger的工作但在这一领域没有其他重大进展,直到最近Wyner和Ash [4]制定了二进制突发校正卷积码的界限,并找到了达到这些界限的几个最佳代码。他们的工作刺激了Berlekamp [5]制定了构建任何冗余的最优二进制代码的一般过程。在大多数情况下,这些最佳代码明显优于相应的Hagelbarger代码。 Hagelbarger和Peterson为Hagelbarger代码设计了简单的解码电路,但是Berlekamp没有给出解码电路,而Wyner 161只给出了一类非最佳代码的解码电路。
在IV和V节中,将会制定一个可以应用于前面提及的所有代码的解码过程,实际上可以应用于只有微小限制的任何突发校正卷积码。将显示该过程可以用非常简单的解码电路来实现。第二节和第三节将致力于开发讨论该解码过程所需的背景知识。
二,转载代码结构
由于只有低冗余码通常与脉冲串校正有关,我们将限制我们讨论到具有冗余......
Abstract-A general procedure is formulated for decoding any convolutional code with decoding delay N blocks that corrects all bursts con6ned to r or fewer consecutive blocks followed by a guard
space of at least N - 1 consecutive error-free blocks. It is shown that all such codes can be converted to a form called “doubly systematic” which simplifies the decoding circuitry. The decoding
procedure can then be implemented with a circuit of the same order of complexity as a parity-checking circuit for a block-linear code. A block diagram of a complete decoder is given for an optimal burstcorrecting code. It is further shown that error propagation after a decoding mistake is always terminated by the occurrence of a double guard space of error-free blocks.
I. INTRODUCTION
HE CONVOLUTIONAL type of error-correcting code in which encoding dependencies exist over the entire encoded sequence rather than over finite length segments or blocks was first introduced by Elias
in 1955 [I]. D. W. Hagelbarger [2] was the first to use these codes for burst correction. (Hagelbarger used the term “recurrent” code rather than “convolutional” code and several later authors have followed his practice. In this paper, however, we shall adhere to Elias’ original usage.) W. W. Peterson [3] refined the work of Hagelbarger, but no other significant progress was made in this area until recently when Wyner and Ash [4] formulated bounds for binary burst-correcting convolutional codes and found several optimal codes which achieved these bounds. Their work stimulated Berlekamp [5] to formulate a general procedure for constructing optimal binary codes of any redundancy. In most cases, these optimal codes are significantly better than the corresponding Hagelbarger codes.
Hagelbarger and Peterson have devised simple decoding......
本文献翻译作品由 毕业论文设计参考 [http://www.qflunwen.com] 征集整理——突发校正卷积码的实现文献翻译!